Skip to Content

AWS Certified Advanced Networking – Specialty ANS-C01 Exam Questions and Answers – 1

The latest AWS Certified Advanced Networking – Specialty ANS-C01 certification actual real practice exam question and answer (Q&A) dumps are available free, which are helpful for you to pass the AWS Certified Advanced Networking – Specialty ANS-C01 exam and earn AWS Certified Advanced Networking – Specialty ANS-C01 certification.

Question 71

Exam Question

A company has its production VPC (VPC-A) in the eu-west-1 Region in Account 1. VPC-A is attached to a transit gateway (TGW-A) that is connected to an on-premises data center in Dublin, Ireland, by an AWS Direct Connect transit VIF that is configured for an AWS Direct Connect gateway. The company also has a staging VPC (VPC-B) that is attached to another transit gateway (TGW-B) in the eu-west-2 Region in Account 2.

A network engineer must implement connectivity between VPC-B and the on-premises data center in Dublin.

Which solutions will meet these requirements? (Choose two.)

A. Configure inter-Region VPC peering between VPC-A and VPC-B. Add the required VPC peering routes. Add the VPC-B CIDR block in the allowed prefixes on the Direct Connect gateway association.

B. Associate TGW-B with the Direct Connect gateway. Advertise the VPC-B CIDR block under the allowed prefixes.

C. Configure another transit VIF on the Direct Connect connection and associate TGW-B. Advertise the VPC-B CIDR block under the allowed prefixes.

D. Configure inter-Region transit gateway peering between TGW-A and TGW-B. Add the peering routes in the transit gateway route tables. Add both the VPC-A and the VPC-B CIDR block under the allowed prefix list in the Direct Connect gateway association.

E. Configure an AWS Site-to-Site VPN connection over the transit VIF to TGW-B as a VPN attachment.

Correct Answer

B. Associate TGW-B with the Direct Connect gateway. Advertise the VPC-B CIDR block under the allowed prefixes.

C. Configure another transit VIF on the Direct Connect connection and associate TGW-B. Advertise the VPC-B CIDR block under the allowed prefixes.

Explanation

B. Associate TGW-B with the Direct Connect gateway. Advertise the VPC-B CIDR block under the allowed prefixes. This will allow traffic from VPC-B to be sent over the Direct Connect connection to the on-premises data center via TGW-B.
C. Configure another transit VIF on the Direct Connect connection and associate TGW-B. Advertise the VPC-B CIDR block under the allowed prefixes. This will enable the use of the Direct Connect connection for VPC-B’s traffic by connecting TGW-B to the Direct Connect gateway.

Question 72

Exam Question

A company has deployed a web application on AWS. The web application uses an Application Load Balancer (ALB) across multiple Availability Zones. The targets of the ALB are AWS Lambda functions. The web application also uses Amazon CloudWatch metrics for monitoring. Users report that parts of the web application are not loading properly. A network engineer needs to troubleshoot the problem. The network engineer enables access logging for the ALB.

What should the network engineer do next to determine which errors the ALB is receiving?

A. Send the logs to Amazon CloudWatch Logs. Review the ALB logs in CloudWatch Insights to determine which error messages the ALB is receiving.

B. Configure the Amazon S3 bucket destination. Use Amazon Athena to determine which error messages the ALB is receiving.

C. Configure the Amazon S3 bucket destination. After Amazon CloudWatch Logs pulls the ALB logs from the S3 bucket automatically, review the logs in CloudWatch Logs to determine which error messages the ALB is receiving.

D. Send the logs to Amazon CloudWatch Logs. Use the Amazon Athena CloudWatch Connector to determine which error messages the ALB is receiving.

Correct Answer

A. Send the logs to Amazon CloudWatch Logs. Review the ALB logs in CloudWatch Insights to determine which error messages the ALB is receiving.

Question 73

Exam Question

A company is planning to use Amazon S3 to archive financial data. The data is currently stored in an on-premises data center. The company uses AWS Direct Connect with a Direct Connect gateway and a transit gateway to connect to the on-premises data center. The data cannot be transported over the public internet and must be encrypted in transit.

Which solution will meet these requirements?

A. Create a Direct Connect public VIF. Set up an IPsec VPN connection over the public VIF to access Amazon S3. Use HTTPS for communication.

B. Create an IPsec VPN connection over the transit VIF. Create a VPC and attach the VPC to the transit gateway. In the VPC, provision an interface VPC endpoint for Amazon S3. Use HTTPS for communication.

C. Create a VPC and attach the VPC to the transit gateway. In the VPC, provision an interface VPC endpoint for Amazon S3. Use HTTPS for communication.

D. Create a Direct Connect public VIF. Set up an IPsec VPN connection over the public VIF to the transit gateway. Create an attachment for Amazon S3. Use HTTPS for communication.

Correct Answer

B. Create an IPsec VPN connection over the transit VIF. Create a VPC and attach the VPC to the transit gateway. In the VPC, provision an interface VPC endpoint for Amazon S3. Use HTTPS for communication.

Question 74

Exam Question

A company is using Amazon Route 53 Resolver DNS Firewall in a VPC to block all domains except domains that are on an approved list. The company is concerned that if DNS Firewall is unresponsive, resources in the VPC might be affected if the network cannot resolve any DNS queries. To maintain application service level agreements, the company needs DNS queries to continue to resolve even if Route 53 Resolver does not receive a response from DNS Firewall.

Which change should a network engineer implement to meet these requirements?

A. Update the DNS Firewall VPC configuration to disable fail open for the VPC.

B. Update the DNS Firewall VPC configuration to enable fail open for the VPC.

C. Create a new DHCP options set with parameter dns_firewall_fail_open=false. Associate the new DHCP options set with the VPC.

D. Create a new DHCP options set with parameter dns_firewall_fail_open=true. Associate the new DHCP options set with the VPC.

Correct Answer

B. Update the DNS Firewall VPC configuration to enable fail open for the VPC.

Question 75

Exam Question

An Australian ecommerce company hosts all of its services in the AWS Cloud and wants to expand its customer base to the United States (US). The company is targeting the western US for the expansion. The company’s existing AWS architecture consists of four AWS accounts with multiple VPCs deployed in the ap-southeast-2 Region. All VPCs are attached to a transit gateway in ap-southeast-2. There are dedicated VPCs for each application service. The company also has VPCs for centralized security features such as proxies, firewalls, and logging.

The company plans to duplicate the infrastructure from ap-southeast-2 to the us-west-1 Region. A network engineer must establish connectivity between the various applications in the two Regions. The solution must maximize bandwidth, minimize latency and minimize operational overhead.

Which solution will meet these requirements?

A. Create VPN attachments between the two transit gateways. Configure the VPN attachments to use BGP routing between the two transit gateways.

B. Peer the transit gateways in each Region. Configure routing between the two transit gateways for each Region’s IP addresses.

C. Create a VPN server in a VPC in each Region. Update the routing to point to the VPN servers for the IP addresses in alternate Regions.

D. Attach the VPCs in us-west-1 to the transit gateway in ap-southeast-2.

Correct Answer

B. Peer the transit gateways in each Region. Configure routing between the two transit gateways for each Region’s IP addresses.

Explanation

Peering the transit gateways in each region would establish a private network connection between the two regions, allowing the company to route traffic between the VPCs in different regions without going over the public internet. This would help minimize latency and maximize bandwidth while reducing the operational overhead of managing multiple VPN connections.

Question 76

Exam Question

A company is using an AWS Site-to-Site VPN connection from the company’s on-premises data center to a virtual private gateway in the AWS Cloud Because of congestion, the company is experiencing availability and performance issues as traffic travels across the internet before the traffic reaches AWS. A network engineer must reduce these issues for the connection as quickly as possible with minimum administration effort.

Which solution will meet these requirements?

A. Edit the existing Site-to-Site VPN connection by enabling acceleration. Stop and start the VPN service on the customer gateway for the new setting to take effect.

B. Configure a transit gateway in the same AWS Region as the existing virtual private gateway. Create a new accelerated Site-to-Site VPN connection. Connect the new connection to the transit gateway by using a VPN attachment. Update the customer gateway device to use the new Site to Site VPN connection. Delete the existing Site-to-Site VPN connection

C. Create a new accelerated Site-to-Site VPN connection. Connect the new Site-to-Site VPN connection to the existing virtual private gateway. Update the customer gateway device to use the new Site-to-Site VPN connection. Delete the existing Site-to-Site VPN connection.

D. Create a new AWS Direct Connect connection with a private VIF between the on-premises data center and the AWS Cloud. Update the customer gateway device to use the new Direct Connect connection. Delete the existing Site-to-Site VPN connection.

Correct Answer

B. Configure a transit gateway in the same AWS Region as the existing virtual private gateway. Create a new accelerated Site-to-Site VPN connection. Connect the new connection to the transit gateway by using a VPN attachment. Update the customer gateway device to use the new Site to Site VPN connection. Delete the existing Site-to-Site VPN connection

Question 77

Exam Question

A company has created three VPCs: a production VPC, a nonproduction VPC, and a shared services VPC. The production VPC and the nonproduction VPC must each have communication with the shared services VPC. There must be no communication between the production VPC and the nonproduction VPC. A transit gateway is deployed to facilitate communication between VPCs. Which route table configurations on the transit gateway will meet these requirements?

A. Configure a route table with the production and nonproduction VPC attachments associated with propagated routes for only the shared services VPC. Create an additional route table with only the shared services VPC attachment associated with propagated routes from the production and nonproduction VPCs.

B. Configure a route table with the production and nonproduction VPC attachments associated with propagated routes for each VPC. Create an additional route table with only the shared services VPC attachment associated with propagated routes from each VPC.

C. Configure a route table with all the VPC attachments associated with propagated routes for only the shared services VPCreate an additional route table with only the shared services VPC attachment associated with propagated routes from the production and nonproduction VPCs.

D. Configure a route table with the production and nonproduction VPC attachments associated with propagated routes disabled. Create an additional route table with only the shared services VPC attachment associated with propagated routes from the production and nonproduction VPCs.

Correct Answer

A. Configure a route table with the production and nonproduction VPC attachments associated with propagated routes for only the shared services VPC. Create an additional route table with only the shared services VPC attachment associated with propagated routes from the production and nonproduction VPCs.

Question 78

Exam Question

A network engineer needs to standardize a company’s approach to centralizing and managing interface VPC endpoints for private communication with AWS services. The company uses AWS Transit Gateway for inter-VPC connectivity between AWS accounts through a hub-and-spoke model. The company’s network services team must manage all Amazon Route 53 zones and interface endpoints within a shared services AWS account. The company wants to use this centralized model to provide AWS resources with access to AWS Key Management Service (AWS KMS) without sending traffic over the public internet.

What should the network engineer do to meet these requirements?

A. In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to the interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

B. In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to the interface endpoint. Associate each private hosted zone with the shared services AWS account.

C. In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in each spoke AWS account with an alias record that points to each interface endpoint. Associate each private hosted zone with the shared services AWS account.

D. In each spoke AWS account, create an interface endpoint for AWS KMS. Modify each interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to each interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

Correct Answer

A. In the shared services account, create an interface endpoint for AWS KMS. Modify the interface endpoint by disabling the private DNS name. Create a private hosted zone in the shared services account with an alias record that points to the interface endpoint. Associate the private hosted zone with the spoke VPCs in each AWS account.

Explanation

Option A is the correct answer because it creates a private hosted zone in the shared services account with an alias record that points to the interface endpoint, and associates the private hosted zone with the spoke VPCs in each AWS account. Disabling the private DNS name of the interface endpoint ensures that DNS resolution of the endpoint is restricted to the Amazon Route 53 private hosted zone. This option creates a centralized model for managing interface endpoints and Route 53 zones in a shared services AWS account, which simplifies administration and reduces complexity.

Question 79

Exam Question

A network engineer has deployed an Amazon EC2 instance in a private subnet in a VPC. The VPC has no public subnet. The EC2 instance hosts application code that sends messages to an Amazon Simple Queue Service (Amazon SQS) queue. The subnet has the default network ACL with no modification applied. The EC2 instance has the default security group with no modification applied.

The SQS queue is not receiving messages.

Which of the following are possible causes of this problem? (Choose two.)

A. The EC2 instance is not attached to an IAM role that allows write operations to Amazon SQS.

B. The security group is blocking traffic to the IP address range used by Amazon SQS

C. There is no interface VPC endpoint configured for Amazon SQS

D. The network ACL is blocking return traffic from Amazon SQS

E. There is no route configured in the subnet route table for the IP address range used by Amazon SQS

Correct Answer

B. The security group is blocking traffic to the IP address range used by Amazon SQS

E. There is no route configured in the subnet route table for the IP address range used by Amazon SQS

Explanation

B. The security group is blocking traffic to the IP address range used by Amazon SQS: By default, Amazon SQS uses the Amazon S3 endpoint for the region. If the default security group applied to the instance is blocking outbound traffic to the Amazon S3 endpoint, then the EC2 instance cannot send messages to the Amazon SQS queue.

E. There is no route configured in the subnet route table for the IP address range used by Amazon SQS: The EC2 instance in the private subnet requires a route to the Amazon SQS endpoint. If there is no route configured in the subnet route table, then the traffic will not be able to reach the Amazon SQS service.

Question 80

Exam Question

A company has an AWS Direct Connect connection between its on-premises data center in the United States (US) and workloads in the us-east-1 Region. The connection uses a transit VIF to connect the data center to a transit gateway in us-east-1. The company is opening a new office in Europe with a new on-premises data center in England. A Direct Connect connection will connect the new data center with some workloads that are running in a single VPC in the eu-west-2 Region. The company needs to connect the US data center and us-east-1 with the Europe data center and eu-west-2. A network engineer must establish full connectivity between the data centers and Regions with the lowest possible latency.

How should the network engineer design the network architecture to meet these requirements?

A. Connect the VPC in eu-west-2 with the Europe data center by using a Direct Connect gateway and a private VIF. Associate the transit gateway in us-east-1 with the same Direct Connect gateway. Enable SiteLink for the transit VIF and the private VIF.

B. Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Associate the transit gateway in us-east-1 with the same Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.

C. Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.

D. Connect the VPC in eu-west-2 with the Europe data center by using a Direct Connect gateway and a private VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for the transit VIF and the private VIF.

Correct Answer

C. Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.

Explanation

This solution creates a new transit gateway in the eu-west-2 Region and connects it to the VPC in that Region. The Europe data center is connected to the new transit gateway using a Direct Connect gateway and a new transit VIF. The transit gateway in us-east-1 is associated with the same Direct Connect gateway, and both transit VIFs are enabled with SiteLink. The two transit gateways are then peered, allowing full connectivity between the data centers and Regions with the lowest possible latency. This solution is cost-effective and efficient as it does not require creating a new Direct Connect gateway.